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Abstract 

Background One in five adults in the US experience mental illness and over half of these adults do not receive 
treatment. In addition to the access gap, few innovations have been reported for ensuring the right level of mental 
healthcare service is available at the right time for individual patients.

Methods Historical observational clinical data was leveraged from a virtual healthcare system. We conceptualize 
mental healthcare services themselves as therapeutic interventions and develop a prototype computational frame-
work to estimate their potential longitudinal impacts on depressive symptom severity, which is then used to assess 
new treatment schedules and delivered to clinicians via a dashboard. We operationally define this process as “session 
dosing”: 497 patients who started treatment with severe symptoms of depression between November 2020 and Octo-
ber 2021 were used for modeling. Subsequently, 22 mental health providers participated in a 5-week clinical quality 
improvement (QI) pilot, where they utilized the prototype dashboard in treatment planning with 126 patients.

Results The developed framework was able to resolve patient symptom fluctuations from their treatment sched-
ules: 77% of the modeling dataset fit criteria for using the individual fits for subsequent clinical planning where five 
anecdotal profile types were identified that presented different clinical opportunities. Based on initial quality thresh-
olds for model fits, 88% of those individuals were identified as adequate for session optimization planning using the 
developed dashboard, while 12% supported more thorough treatment planning (e.g. different treatment modalities). 
In the clinical pilot, 90% of clinicians reported using the dashboard a few times or more per member. Although most 
clinicians (67.5%) either rarely or never used the dashboard to change session types, numerous other discussions were 
enabled, and opportunities for automating session recommendations were identified.

Conclusions It is possible to model and identify the extent to which mental healthcare services can resolve depres-
sive symptom severity fluctuations. Implementation of one such prototype framework in a real-world clinic represents 
an advancement in mental healthcare treatment planning; however, investigations to assess which clinical end-
points are impacted by this technology, and the best way to incorporate such frameworks into clinical workflows, are 
needed and are actively being pursued.
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Background
It is estimated that 1 in 5 adults in the United States 
(US) experience mental illness [1]. In 2020 alone, the US 
government spent roughly $280B on services for men-
tal health and substance use disorders [2]. Despite this 
figure, the percentage of adults with unmet needs has 
been increasing annually since 2011 and over half of 
US adults with mental illness do not receive treatment 
[3]. At the current pace, provider shortage is projected 
to increase reaching a shortage of 30,000 psychiatrists 
within the next few years [4]. In addition to the access 
gap, treatment planning and evaluation within the psy-
chotherapy landscape is still largely conducted in the 
absence of measurement and data, leading to significant 
inefficiencies and treatment quality concerns [5, 6]. This 
evidence supports the need for novel mental health treat-
ment models and technologies focused on streamlining 
the planning and management of care to help address 
the persistent mental healthcare crisis: For example, in 
a recent article exploring opportunities for optimizing 
personalized management of depression, Reynolds [7] 
highlights “… How to leverage mental health expertise 
broadly in the service of personalized prevention and 
treatment, [therefore] becomes the central question.”

From a technology standpoint, there has been an 
uptick in the application of machine learning and artifi-
cial intelligence (ML/AI) to improve access to—and the 
effectiveness of—mental healthcare via chatbots and 
predictions for the most appropriate medications or 
treatment courses [8–15]. While some hypothesize that 
chatbots may reduce the need for trained mental health-
care professionals from the process of delivering care, a 
2020 survey of global psychiatrists [16] found that only 
7 of 792 (0.9%) believe AI agents will be able to provide 
empathetic care. Current technological innovations 
exist predominantly in the medication and care delivery 
spaces, with little to no focus on how individuals interact 
with mental healthcare services as a type of therapeutic 
intervention in and of itself—presumably due to a lack 
of historical data enabling such investigation. Therefore, 
at least in the near term, impactful technological devel-
opments in mental healthcare will likely require inter-
actions with trained professionals (humans in the loop), 
and there is a need for innovation in the domain of opti-
mizing resource allocation in a more efficient and precise 
fashion.

Some current innovative clinical frameworks for 
triaging services as part of a patient’s treatment plan 
involve a stepped care model, which advocates for 
the care of individuals by optimally utilizing scarce 
resources to their greatest effect at the population 
level [17–19]. The “stepped” interventions are typically 

determined by an individuals’ presenting problems, 
preferences, and ideally clinical outcomes [19]. How-
ever, treatment decision protocols can be subjective and 
lack a holistic assessment of all possible data, rendering 
them largely unsuitable for objective personalization 
or real-time adjustments. Further, it has been noted 
that implementation of stepped care methods can vary 
greatly across institutions [20]. While clinical judgment 
is a valuable component to treatment decisions, it is 
not always accurate  - providers tend to overestimate 
their success with patients relative to other providers, 
and they are not always effective at identifying when 
patients are getting worse due to a positive self-assess-
ment bias [21]. Given the increased adoption of tech-
nology in mental healthcare (which has been amplified 
by the COVID-19 pandemic [22–24]) and increased 
attention on clinically relevant passive and active meas-
urement [25–28]—enabled by increased adoption of 
mobile technologies—data is emerging to enable objec-
tive, near real-time, personalization of treatment needs, 
as well as service and resource optimization.

To begin addressing the above gaps, in this work, 
we present a prototype computational framework for 
optimizing mental healthcare services at the individual 
level, as well as preliminary findings from an explora-
tory pilot deploying this framework in the clinic. His-
torical real-world (observational) clinical data was 
leveraged from a virtual mental healthcare platform, 
which focuses on measurement-based care and cap-
tures routine patient-reported symptom severity 
reports in between individual mental healthcare ses-
sions. By conceptualizing psychotherapy and support-
ing service appointments as ‘therapeutic interventions’ 
and modifying quantitative approaches rooted in phar-
macodynamics [29], we estimate temporal impacts of 
individual services on depressive symptom severity at 
the population and individual patient levels. The pro-
posed framework is subsequently able to generate 
hypothetical symptom severity trajectories based on 
new potential treatment schedules. We operationally 
define this process as “session dosing” and describe 
some of the technical aspects of the quantitative frame-
work, as well as interpretive observations, strengths, 
and limitations, through real patient vignettes. Finally, 
we present preliminary learnings and clinician feed-
back from a pilot in which we deployed this framework 
to clinicians as an exploratory clinical quality improve-
ment (QI) initiative. To our knowledge, this work is the 
first proof-of-concept for the application of quantita-
tive science on mental health symptom data to iden-
tify impacts of individual services at the patient level, 
which can then be applied to optimize mental health 
service utilization.
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Methods
Observational cohort and analysis data
Retrospective observational clinical data, generated 
from real-world mental healthcare treatment at Mind-
strong was queried October 1, 2022, for individuals who 
screened into treatment with a severe symptom severity 
report based on the DSM-5 Level 1 cross-cutting symp-
tom self-report questionnaire [30] (DSM-L1). Although 
not a standard research symptom severity measure, 
patients within the Mindstrong healthcare system pre-
dominantly represent individuals suffering from  seri-
ous mental health conditions, most of which are marked 
by symptoms that reach across problem domains. For 
this healthcare system, the choice of the DSM-L1 was 
intentionally rooted in this concept - an ability to moni-
tor patients via their chronic conditions, rather than a 
singular diagnostic tool. As part of routine clinical care, 
patients were administered the DSM-L1 questionnaire at 
regular intervals (every 60 days prior to September 2021; 
every 30 days after September 2021).

Depressive symptoms in the DSM-L1 are captured by 
two questions that utilize a 5-point Likert scale to evalu-
ate how much, or how often, an individual has been both-
ered by that symptom during the last 2 weeks (0 = not at 
all/none, 1 = rare, less than a day or two/slight; 2 = sev-
eral days/mild, 3 = more than half the days/moderate; 
4 = nearly every day/severe): Item 1 measures anhedo-
nia, which prompts “how often have you had little inter-
est or pleasure in doing things?”, while item 2 measures 
depressed mood, which prompts “how often have you 
been feeling down, depressed, or hopeless?” An average 
of the two depression items was taken as the single meas-
ure by which to represent depressive symptom severity at 
a given time point. This value was subsequently normal-
ized by the maximum possible value—4 in this case—to 
generate a value in the range [0,1]. It is acknowledged 
that representing—and modeling—depressive symptom 
severity from these two items alone does not capture the 
full spectrum of depressive symptoms; however, these 
items are integral to the measurement-based care model 
of the presented healthcare system and form the founda-
tion by which clinicians who operate in this system track 
symptom severity over time. As will be discussed later, 
the presented framework is conceptually agnostic to the 
underlying measures driving the symptom severity score, 
and so while the results are intended only to pertain to 
the healthcare system of interest, the concepts and novel 
opportunities for clinical decision making are innova-
tions that could benefit the mental healthcare field at 
large.

The minimum criteria for inclusion in the analysis 
data set was to have at least two DSM-L1 reports, with 
at least one treatment session (of any kind) in between 

those reports. The available treatment session types 
were: (i) coaching sessions with an unlicensed profes-
sional, which focus on social determinants of health 
issues and assistance with planning, organization, 
and resource connection; (ii) therapy sessions with a 
licensed therapist or counselor; (iii) psychiatry sessions 
for treatment and medication management. There were 
no additional demographic or clinical inclusion/exclu-
sion criteria assigned for the analysis. The specific data 
elements leveraged were the timing and type of treat-
ment sessions, and the timing of depressive symptom 
reports within the sample window.

A total of 497 patients were included in the modeling 
analysis. Table  1 provides a breakdown of the clini-
cal and demographic factors of the patients present in 
this analysis, while Table 2 presents a summary of the 
amount, and duration, of data present for the sample 
population. All individuals were initially referred as eli-
gible for care by their insurance providers and incurred 
no additional out-of-pocket costs for receiving services.

Table 1 Analysis sample population demographics

N (% Total)

Age (years)

 < 30 15 (3.0)

 30–39 37 (7.4)

 40–49 95 (19.1)

 50–59 155 (31.2)

 60–69 153 (30.8)

 70+ 42 (8.5)

Gender

 Female 359 (72.2)

 Male 135 (27.2)

 Unknown 3 (0.6)

Race/Ethnicity

 White 251 (50.5)

 Black or African American 38 (7.6)

 Hispanic or Latino 30 (6.0)

 Other 26 (5.2)

 Unknown 152 (30.6)

Living area

 Rural 282 (56.7)

 Urban 215 (43.3)

Primary diagnosis

 Bipolar disorder 98 (19.7)

 Major depressive disorder 241 (48.5)

 Personality disorder 33 (6.6)

 Schizophrenia or related 24 (4.8)

 Other 101 (20.3)
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Modeling framework
The data leveraged comprises real-world clinical sched-
ules not designed a priori. Successive treatment sessions 
may occur at any time interval relative to each other, or 
relative to each symptom severity report in the sample 
window. For this type of analysis, we employed a general 
systems dynamics modeling framework. Specifically, we 
draw inspiration from the field of pharmacometrics and 
adapt the application of indirect response (IDR) models 
[29], conceptualizing a clinical session (treatment) as a 
type of therapeutic intervention that carries some theo-
retical ‘therapeutic mass’, which can positively impact 
symptom severity levels. Traditionally, IDR models are 
used to represent interventions on biological processes 
that have natural turnover, whose production or elimi-
nation rate is the target of the intervention. In these 
scenarios, IDR models resolve the time delay between 
intervention and subsequent biological impact: Some 
examples (not exhaustive) from the literature can be 
found in the fields of oncology [31–33], hematology [34–
36], and rheumatology [37–39].

The IDR models contrast to direct effect models, which 
assume an immediate impact on the dependent vari-
able. Previous internal exploratory modeling (results not 
shown) did not support this approach as a better fit for 
the available data; however, as will be discussed more 
in subsequent sections of this report, it is emphasized 
that the proposed framework is a prototype that fits the 
requirements of the problem, and opens the door for fur-
ther research, rather than a formal declaration of model 
propriety. Indeed, it will be warranted to continually 
evaluate different modeling hypotheses and use cases, 
as well as allowing for the possibility that subgroups may 
exist in the population which align more to the assump-
tions of one model over another.

For this work, depressive symptoms are represented 
to be at a certain equilibrium at onset, with symptoms 

being generated and resolved naturally (although at 
elevated levels)—treatment (session utilization) impact 
is assumed to decrease symptom severity and is param-
eterized to decrease the production of symptoms. An 
analogous effect on symptom severity was explored, 
parameterizing the treatment effect as leading to an 
increase in the elimination rate of symptoms (results not 
shown); however, this approach required the addition of 
an unbounded ‘stimulation’ ( Smax ) parameter to the Hill 
function in the model and led to numerical difficulties in 
the estimation process. It was for these reasons that the 
simplified, bounded, nature of parameterizing the treat-
ment effect as reducing (potentially completely turning 
off) the symptom generating process was adopted. Fig-
ure 1 shows the base structural model—further technical 
details of the model, including the statistical error model 
assumptions, can be found in the Additional file  1: S1. 
Model parameter estimation was completed leveraging 
the stochastic approximation expectation–maximization 
(SAEM) [40] algorithm utilizing the nonlinear mixed-
effects modeling software, NONMEM (see below)—the 
model code is available as Additional file 2: S2).

It is possible that analytical approaches outside of 
general systems dynamics frameworks may be capa-
ble of modeling this type of data; however, the current 
approach was selected given our group’s expertise in this 
domain, its ability to accommodate sparse, asynchro-
nous, and irregularly timed observations, as well as its 
appropriateness for capturing individual and population 
expectations with physiologically motivated systems. It 
must be emphasized that this framework is not intended 
to be, nor is equipped to be, mechanistic or determinis-
tic—it was developed specifically to accommodate real-
world healthcare systems with sparse and irregular data 
availability. Rather than attempting to generate consen-
sus on the most appropriate modeling approach, its pri-
mary objective is to provide one possible quantitative 

Table 2 Summary of historical treatment sessions and correlations between service types

Observation type Coaching Therapy Psychiatry DSM-L1 reports

Count 851 8043 1746 3107

Average per patient (mean) 1.7 16.2 3.5 6.2

Standard Deviation 4.8 15.3 5.2 4.5

[Min., Max.] [0, 44] [0, 84] [0, 33] [2, 22]

Quartile cutoffs
[25%, 50%, 75%]

[0, 0, 0] [4, 11, 25] [0, 1, 5] [3, 5, 8]

Correlation matrix for observation types

 Coaching 1

 Therapy 0.12 1

 Psychiatry 0.19 0.41 1

 DSM-L1 Reports 0.12 0.72 0.45 1
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framework by which discrepancies and likenesses of indi-
vidual data fits can be objectively evaluated and used to 
triage clinical decision making.

Determination of support level for individual model fits
It is not the expectation that the assumptions of the 
proposed model should support every individual’s data 
in the same fashion: The sparsity of the data, combined 
with the implicit assumption that session schedules 
alone will resolve symptom severity trajectories for the 
whole population, do not support such an expectation. 
In order to identify the potential treatment planning 

options the framework may be capable of support-
ing for each individual, it is necessary to establish an 
objective approach for determining how well the model 
fits each individual’s data at each iteration. In this 
prototype, assessment of the level of confidence (sup-
port) for the model fit at an individual level was com-
puted using the individual weighted residuals (IWRES: 
defined below): Smaller IWRES descriptives at the indi-
vidual level indicate better model fits, meaning that 
those individual symptom dynamics profiles were bet-
ter explained by historical treatment schedules (and 
the assumptions of the model), while larger IWRES 
descriptives at the individual level indicate that the 
symptom dynamics profiles may not be well- resolved 
by the assumptions of the model and may need to be 
triaged separately.

IWRES weights individual observed residuals 
( RES = observed − predicted ) by the defined population 
error model. In the case of the current model, a simple 
additive residual error model was employed, which sim-
ply weights RES values by the standard deviation of the 
observed residual variability, turning it into a type of 
z-score. Details for the interested technical reader can be 
found in the Additional file 3: S3.

All TIME = 0 observations are removed from support 
determination as these residuals are always zero given 
the way the symptom severity component of the model is 
initialized. Therefore, individuals who had the minimum 
number of data points necessary to be in the model (two 
symptom reports and at least one session in between) are 
not able to be classified for support: By definition, these 
individuals would not be supported in the sense that 
there is not enough data to have confidence in the qual-
ity of the model fit for treatment planning. However, they 
do provide information for the model at the population 
level, which is why they remain in the sample modeling 
population. Table  3 highlights the initial logical thresh-
olds for determining the level of support the model fit 
has for the individual: These values were chosen from 
practical considerations and empirical inspection of ini-
tial model fits and will require further optimization in the 
future as specific outcome targets become of interest (e.g. 
outcome specific thresholds).

rin,dep

rin,dep

Dep

TRT

Therapy

kout,th

Coach

kout,cp

Psychiatry

kout,psych

ƒ

Structural model for assessing impacts of mental 
healthcare services on depressive symptom severity

Fig. 1 Indirect response model structure employed to capture 
population dynamics of responses to different types of mental 
healthcare services. The structural model is set up to take session 
events as unit inputs into a latent service compartment. The choice 
of using a unit input as ’mass’ into the latent space is arbitrary and 
can be challenged with the data over the course of time to gauge 
improvements in the fit of the data. Each service compartment has 
a first-order elimination rate constant ( kout ,∗ ), which is a convenient 
starting point for modeling as it ensures values greater than zero. 
Each service compartment is combined into a combined latent 
treatment ’mass’ (TRT), which is used to drive inhibition of depressive 
symptoms. The function driving the inhibition of symptom 
generation is a type of Hill function with a capacity/sensitivity term 
( S50 ) driving the duration of successful inhibition of symptoms. 
The proposed model also makes the simplifying assumption that 
the maximum effect term in the usual Hill function be fixed to 1 
and is therefore omitted in the expression. The interested technical 
reader may refer to Additional file 1: S1 for additional details of the 
model. For this work, only members who enter treatment with 
severe depression were included. Depression symptom dynamics 
(“Dep” compartment) are modeled as having zero-order production 
and first-order elimination. The values of this compartment are 
patient-reported symptom severity scores. A further simplifying 
assumption is made so that rout ,Dep = rin,Dep , which allows the change 
in symptoms to be capped at the severe ( Dep = 1 ) level

Table 3 Logical rules for determining support level for individual 
model fits

ABS: absolute value; IWRES : observed average IWRES for individual; σIWRES : 
observed standard deviation of IWRES for individual

Supported ABS
(

IWRES
)

≤ 1 σIWRES ≤ 1.5

Semi-supported 1 < ABS
(

IWRES
)

≤ 1.5 1.5 < σIWRES ≤ 2

Unsupported ABS
(

IWRES
)

> 1.5 σIWRES > 2
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The approach of conducting model evaluation at the 
individual level based on estimated fits from all avail-
able data diverges from more traditional model evalu-
ation strategies leveraging performance metrics such as 
sensitivity, specify, predictive power, or cross-validation. 
Diverging from these traditional performance metrics is 
necessary in this approach for two primary reasons—the 
first being that models should be evaluated against their 
intended function. For instance, one would not evalu-
ate predictive power for a model that was not generat-
ing predictions. In this case, the function of the model 
is to assess the strength of evidence supporting a link 
between treatment schedules and clinical symptom tra-
jectories, which requires inclusion of all available data 
as well as evaluation of the model fits at the individual 
level. The second reason for diverging from traditional 
model evaluation metrics with this framework is that the 
application of the model to inform clinical practice (the 
intended function) creates a non-static data generation 
process: The application of these model fits to impact 
treatment planning may change a number of behaviors 
that could fundamentally alter the relationship between 
treatment schedules and symptom severity trajectories. 
For instance, after identifying a patient whose treatment 
schedule does not appear to impact their symptom tra-
jectory (“unsupported” scenario in Table  3), the clinical 
team may decide to adopt a new treatment modality, 
which may improve the link between treatment sched-
ules and symptom reports. This phenomenon means that 
‘performance’ of the model in the traditional context is 
not expected to remain constant and reporting momen-
tary snapshot performance is misleading. It is worth not-
ing, methodologically, that performance metrics tracking 
changes in model fit over time, or improving treatment 
efficiency measures, will be critical evaluation strate-
gies—closer to traditional model performance—when 
the framework is deployed in clinics for longer durations.

Clinical beta test pilot
A qualitative, exploratory, clinical quality improvement 
pilot was executed over 5 weeks to investigate early 
potential implementation pitfalls for the modeling frame-
work and pressure test assumptions of clinical utility in 
patient care and care operations.

To be eligible for participation, a clinician must have 
had active patients on their caseload who entered treat-
ment (intake assessment) with a severity score for either 
anxiety or depression of “severe” via the DSM-L1. A total 
of 23 clinicians were initially selected from the mental 
health professionals employed at Mindstrong. One clini-
cian transferred all their patients to a new provider half-
way through the pilot, but was still able to complete the 
evaluation questionnaire. Another clinician took a leave 

of absence and was unable to engage in the pilot, result-
ing in 22 provider participants, including 17 therapists, 
3 coaches, and 2 psychiatric prescribers. A total of 126 
patients were included in the pilot. Note that this set of 
patients constituted active patients and is a subset of 
the analysis data set used for the modeling work, which 
included inactive and historical patient data as well.

All clinicians attended an initial instructional meeting 
that included conceptual case studies for exploration on 
how to apply the modeling framework in clinical prac-
tice. Following the initial training, clinicians were given 
a resource guide and had access to the full technical and 
clinical teams for support. Over 5 weeks, clinicians were 
asked to utilize a secure “Session Dosing” dashboard 
similar to the concept mock-ups in Fig.  5 prior to each 
session with an eligible patient. Clinicians were asked 
to record changes in session frequency, as well as their 
rationale for the decision. Finally, they were also asked to 
discuss suggested changes with their patients as part of 
their treatment planning.

Clinicians provided feedback in two 30-min internal 
consultation meetings (weeks 1 and 3) and completed a 
38-item questionnaire (Google form) at the end of the 
pilot (week 5). Consultation meetings were informal and 
were an opportunity to provide feedback and ask ques-
tions. The 38-item evaluation questionnaire was devel-
oped and reviewed by a cross-functional team to evaluate 
the pilot and is available in Additional file 4: S4.

Software and hardware
All modeling was conducted using the NONMEM soft-
ware [41] running on an Amazon Web Services (AWS) 
EC2 instances with 4 compute cores, 16  GB RAM, and 
50  GB root volumes. All data processing and plotting 
were conducted with MacBook Pro computers running 
32 GB DDR4 RAM on 2.3 GHz 8-Core Intel Core i9 pro-
cessors and 1  TB solid state hard-drives, utilizing the 
Python programming language [42].

The Prototype dashboard was implemented using the 
“shiny” package [43] in R [44] to create a web application 
hosted on Amazon AWS. The deployed dashboard was 
protected with VPN to ensure only participating clini-
cians could access the web application.

Survey response process and descriptive statistic sum-
maries were conducted with Google Sheets on a Mac-
Book Pro with 16 GB GB DDR4 RAM on 2.3 GHz 8-Core 
Intel Core i9 processors and a 500  GB solid state hard 
drive.

Results
Observational cohort
Table  1 displays the breakdown of sample demograph-
ics for the observational cohort. There was a total of 497 
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individuals included in the modeling analysis. The sam-
ple population was predominantly White (50.5%), Female 
(72.2%), and mostly aged 50  years and older (70.5%). 
Roughly 31% of individuals did not have registered eth-
nicities. A majority of individuals in the sample popula-
tion were of rural living status (56.7%), which speaks to 
one of the benefits of virtual mental healthcare. Of the 
primary diagnoses captured in the sample population, 
Major Depression was the most predominant (48.5%), 
which is largely reflective of the analysis condition of 
including individuals who entered services with severe 
depressive symptom levels: bipolar disorder was the sec-
ond most predominate condition (19.7%), while person-
ality disorder and schizophrenia made up 6.6% and 4.8% 
of the sample population respectively. Data wise, coach-
ing sessions were the least prominent, but these sessions 
were also the most recent addition to the clinical care 
offerings. There was a moderately strong positive corre-
lation between therapy and psychiatry utilization in the 
sample data ( r = 0.41).

Modeling
Figure  2 shows the distribution of the population esti-
mates of the model parameters in the sample population. 
It is important to note that the parameters do not have 

interpretable values—or units—from a clinical perspec-
tive as the model space is latent in nature and does not 
represent physical measurements; however, comparative 
interpretations of the parameters are appropriate. Hav-
ing higher- or lower-values for a set of parameters can be 
interpreted relative to either the average population value 
for those parameters, or to compare a set of individuals 
for treatment planning implications.

In this model, sessions represent a ‘therapeutic dose’ 
(input) and the kout,∗ terms represent how fast that input 
dissipates in an individual, which would be analogous to 
how fast a medication was eliminated from the body—
the higher these values, the faster the input dissipates. 
There was increasing variability, and increasing typical 
values (average, or central tendency, in the population) 
observed coinciding with the clinical triaging hierarchy 
of coaching, therapy, and psychiatry. The “response sen-
sitivity for services” ( S50 ) term indicates how much of the 
therapeutic input is necessary to sustain a response and 
demonstrated a range of sensitivities to treatment across 
an order of magnitude for the observed sample window, 
which is logically consistent with historically observed 
data of a wide range of response levels to mental health-
care treatment, whether pharmacological, psychosocially 
focused, or both. The “relative symptom generation rate” 
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Fig. 2 Final model parameter distribution histograms. In the model, sessions represent a ‘therapeutic dose’ (input) and the kout ,∗ terms represent 
how fast that input dissipates in an individual, which would be analogous to how fast something is eliminated from the body—the higher these 
values, the faster the input dissipates. There is increasing variability, and increasing typical (average, or central tendency in the population) values 
observed coinciding with the clinical triaging hierarchy of coaching, therapy, and psychiatry. The “response sensitivity for services” ( S50 ) term 
indicates how much of the therapeutic input is necessary to sustain a response (see Materials & Methods) and demonstrated a range of sensitivities 
to treatment across an order of magnitude. The “relative symptom generation rate” represents how fast symptoms are observed to return to 
baseline (severe levels in this case). Note again (from Fig. 1) the simplifying assumption that was made such that rout ,dep = rin,dep
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represents how fast symptoms are observed to return to 
baseline (severe levels in this case). While there is some 
variability in this parameter, the distribution is heavily 
focused around the population tendency, which may be 
a result of the homogeneity of the sample from a starting 
symptom severity level, e.g. all individuals in the analysis 
sample screened into treatment with severe depressive 
symptom levels according to the DSM-L1.

The final model fit indicated bias in capturing the low-
est symptom levels, e.g. symptom severity reports of 
‘none’ (severity = 0), where it systematically predicts 
higher values for lower observations. This is not a barrier 
for application as the proposed utility in clinical decision 
making involves semi-quantitative assessment of symp-
tom changes in the near-term, intended to be reviewed 
and updated regularly. Rather, this is an important point 
to note and account for during application and to pro-
gress future model development and refinement. More 
details around this topic are provided in the discussion 
section. Full model diagnostic plots for sample popula-
tion are available as Additional file 3: S3 for the interested 
technical reader.

Observed example profiles
Figure 3 shows individual fits of the data by the presented 
model which have been organized, anecdotally into dif-
ferent types of profiles for the purposes of interpretation 
and discussion. There are five types of fits highlighted, 
ranging from a ‘response’ profile to ‘data not well cap-
tured’. The profiles highlight the hierarchical nature of 
the model fits; there is a ‘population’ fit, which is the 
expected profile for a ‘typical’ individual in the popula-
tion (meaning the profile expected to be generated for 
an individual whose parameter values were equal to the 
population average given the same treatment schedule), 
as well as an ‘individual’ fit, which results from the opti-
mized set of parameter values for that individual and 
their historical treatment schedule. An important result 
of this manuscript is the description of how to interpret 
the model fits conceptually and how that may relate to 
treatment planning: When the model fits the data very 
well, this indicates that the historically reported symp-
tom severity levels can be well characterized by the 
observed session schedule at the time the model was run. 

Conversely when the model does not fit the data well, this 
indicates that the historical symptom severity reports do 
not appear to be directly linked to the session cadence at 
that time. In either case, future model runs may demon-
strate different levels of confidence, or patterns, relative 
to what is observed initially. While this result may seem 
to challenge the utility of the proposed framework, the 
model provides a tool to assess how tightly mental health 
symptom severity is associated with healthcare service 
utilization, in order to make a more informed decision on 
how to proceed with future care coordination and plan-
ning—if there is no historical evidence supporting utility 
from services received, knowing this early is informative 
and provides an opportunity to change course. There-
fore, it is important to develop and evolve methods of 
appropriately triaging types of model fits (see Table 3). A 
summary of the presented model fit types from Fig. 3 is 
provided below.

“Response” profiles (Fig. 3A) demonstrate a high degree 
of symptom resolution that coincides temporally with 
historical treatment schedules and whose data are well 
captured by the model. For these individuals, planning 
treatment schedules around a maintenance mode could 
be one possible next step and utilization of the model. 
“Saturated Response” profiles (Fig.  3B) demonstrate a 
plateau in symptom resolution—to varying degrees—and 
in the case of the profiles shown, a fairly regular cadence 
of treatment touch points. In terms of downstream clini-
cal utilization of the framework for these individuals, 
an assessment of additional resources or a deeper dive 
into what would be needed to further resolve symp-
toms could be had, or it may be determined that the 
‘plateaued’ response is adequate from a clinical perspec-
tive and a maintenance approach would be warranted. 
“Rebounding symptom” profiles and “multi-phasic” pro-
files (Fig. 3C, D) are similar in that a lapse in treatment 
demonstrates a corresponding increase in symptoms, 
while what distinguishes them is simply a matter of when 
the lapse took place relative to their historical treatment 
schedule. In the case of the multi-phasic individuals, an 
observed period of re-engagement with services resulted 
in subsequent decrease in symptoms, while the ‘rebound’ 
profiles did not re-engage with services during the analy-
sis window. It is noteworthy to discuss the left example of 

(See figure on next page.)
Fig. 3 In the figures above, the figure insets represent member (patient) symptom severity reports for depression via the DSM-5 Level 1 
cross-cutting symptom survey, requested at regularly scheduled intervals as part of routine care. In this analysis population, all members started 
treatment with severe reported symptom severity. The black dots represent the reported severity, scaled from 0 to 4 (none-severe) to 0–1. The blue 
and red lines are model generated predictions for the ’typical’ expected population value in the hierarchical model given that members session 
history (frequency and type), while the red line indicates the member specific predictions. The tracts and line segments above the observed/
predicted data show the session cadence for each individual: the yellow line segments at y = 1.0 represent coaching (care partner) sessions, the 
purple line segments at y = 1.1 represent therapy sessions, and the green line segments starting at y = 1.2 represent psychiatry sessions. The x-axis 
(time) is presented as days. The different profiles are described in the text inserts in A–E 
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Fig. 3D, where the ‘rebound’ phase appears to be uniquely 
characterized by a single observation between days 
200–300, emphasizing that these profiles should not be 

interpreted as fixed or static types in the population, 
rather useful vignettes for discussing observed patterns. 
If that observation was indeed an anomaly, as more data 

Example model fits and anectdotal profile types
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B. Plateaued Responses

The plots at the right demonstrate a plateaued response profile 
whereby a certain degree of symptom resolution was reached 
and maintained despite continued, and regular, therapy 
sessions. Subsequent simulations of different session types 
and cadences would allow the members and clinicians to 
discuss barriers to further symptom resolution and align on the 
best session schedule and cadence moving forward. However, 
in both cases, the response line hovers around, or below, 0.5, 
which on the modified DSM scale would coincide with levels 
below 'moderate' and would be considered to have resolved 
symptoms 
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C. Symptoms Rebound

These "rebound" profiles demonstrate members who were 
responsive to mental healthcare treatment in terms of symptom 
resolution, but then saw symptoms return following a lapse in 
service utilization. Note that in the member on the right, there 
was a report of reduced symptom severity around the 430 day 
mark, followed by two additional severe reports. This 
observation highlights both a challenge and an opportunity for 
these models in that major swings in symptoms will not be 
captured if the session data, controlled by population 
assumptions, does not support it. There are many reasons why 
members can report a resolution of symptoms followed by a 
return of symptoms, but these models are concerned with 
longer-term trends, patterns, and evidence.

D. Multi-phasic
These profiles show sensitivies to lapses in treatment 
from a symptom severity standpoint and are similar to 
the 'rebounding' profiles above, but also demonstrate a 
reduction in depressive symptoms following a return to 
treatment. When present, these profiles provide strong 
evidence with respect to the benefit of mental healthcare 
treatment and symptom trajectories. While it is 
acknowledged that these models are not truly 
mechanistic or deterministic in that they do not directly 
capture physiological data, the resolution of symptom 
time courses from session schedules provides a novel 
tool for exploration.

0 100 200 300 400 500
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sy
m

pt
om

 S
ev

er
ity

ID=245.0

0 100 200 300 400 500 600
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sy
m

pt
om

 S
ev

er
ity

ID=279.0

Psychiatry session
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Coaching session

Session Types

Expected trajectory for "typical" 
population member Expected trajectory for individual

Model Fit Types
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These plots show examples of members who almost completely 
resolved depressive symptoms efficienctly, and whose data 
were fairly well characterized by the model. It is interesting to 
note, for the member on the right, despite a long lapse in 
therapy sessions, symptoms continued to resolve, which was 
also captured by the individual fit (red line) of our model, 
whereas the expected trajectory for a 'typical' member in the 
population would have been expected to see a slight increase in 
symptoms.

Population

Individual

Observed Data

Historical Session Schedule

E. Model fit is cautionary or does not captured well
These profiles demonstrate cases in which the session 
schedules alone do not describe symptom trajectories 
and highlight an important point that these models do 
not lend themselves to all profiles in terms of future 
planning;  however, the ability of these models to 
provide an 'expected' symptom dynamics trajectory 
based on population assumptions as well as a valuable 
tool to assess progress and create a treatment plan, 
even if that planning is not in the form of session 
optimization.
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Fig. 3 (See legend on previous page.)
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is collected, the less impactful it would be to the overall 
fit; however, it is also true that the observed spike from 
low- to moderate-symptom severity coincides with the 
longest gap in treatment observed for that individual. 
“Cautionary”, and “not captured well” model fits (Fig. 3E) 
are also present in the data. This is an important result to 
be embraced not as a limitation, but as another opportu-
nity to make earlier and more informed clinical decisions. 
For instance, the lack of relationship between treatment 
schedules and symptom resolution may indicate individ-
uals requiring more—or different types of—support, or 
who may require different clinical strategies. Identifying 
these individuals objectively and early, would be a ben-
efit to any clinical team treating patients. It is noted that 
there may be very reasonable external factors or chal-
lenges at the individual level preventing someone from 
making sustained progress with their depressive symp-
toms—or perhaps they are not ready to start addressing 
their depressive symptoms yet with their clinical team. 
All these situations are feasible, but without a framework 
for identifying when symptom trajectories are unex-
pected, teams are not able to respond accordingly.

Table 4 outlines the breakdown of the sample popula-
tion in terms of the level of confidence for utilizing the fit 
for treatment optimization based on this initial approach 
leveraging individual weighted residuals as a guiding 
metric (see Materials & Methods, as well as Additional 
file  3: S3 for supporting figure and description of the 
approach). Of the 497 individuals in the severe depres-
sion sample population, 116 (23%) were excluded from 
summarizing model fit confidence for not having at least 
two observations points following their baseline observa-
tion. Of the remaining 381, 335 (88%) were considered 
‘well supported’, 35 (9%) were considered as “Semi-sup-
ported”, and 11 (3%) were considered “Unsupported”.

Informing treatment planning
Figure  4 demonstrates how the presented modeling 
framework may be utilized to inform treatment plan-
ning for the two individuals with ‘rebounding symptoms’ 
in Fig. 3. In these instances, developing a re-engagement 
schedule informed by historical data appears feasible. In 

the figure, the dotted horizontal line represents a target 
that may be set (or moved). The historical data for these 
two profiles suggests different levels of treatment fre-
quency would be warranted. For instance, therapy every 
other week may be deemed the most appropriate starting 
point for the top profile, while monthly coaching sessions 
along with therapy every other month may be a better 
starting point for the bottom profile. These individuals 
started at identical places in terms of depression severity, 
and subsequently responded differently to their observed 
historical treatment schedules, which enables the genera-
tion of an informed—personalized—treatment schedule 
for reengagement.

Clinician feedback and observations from an exploratory 
clinical quality improvement pilot
Figure 5 shows wireframes of the initial dashboard used 
to enable clinicians to interface with the simulation por-
tion of the presented modeling framework, enabling 
them to test hypothetical treatment schedules for their 
patients. Further, Fig.  6 highlights mock product con-
cepts resulting from the clinician feedback demonstrat-
ing current thinking of what type of tool will be taken 
into future evidence generation studies.

The total number of patients that had documented 
chart reviews was 126, with an average (interquartile 
range) of 7.1 (3–10) per clinician. Table 5 provides results 
for the clinician use part of the survey. Most providers 
(n = 14; 63%) responded “A few times” when asked how 
often they viewed the dashboard per patient. Six clini-
cians (n = 6, 27%) viewed the dashboard before or after 
each session with their patient, and two clinicians (n = 2, 
9%) viewed the dashboard only once per patient. Pro-
viders reported that reviewing the dashboard prior to 
each session was time-consuming and instead expressed 
preference for reviewing the dashboard every couple of 
sessions, or adding intelligence to the dashboard to tell 
them when to check in. When it came to interpreting 
the dashboard, there was a mix of responses. A total of 
seven clinicians found it difficult to interpret. Seven cli-
nicians (n = 7, 31.5%) reported a neutral feeling about 
the interpretation difficulty. On the other hand, 8 clini-
cians reported it was easy or very easy (n = 8; 36%). Upon 
review of the open-ended responses, six clinicians (n = 6, 
27%) expressed that the dashboard was easier to inter-
pret once they had more experience and became more 
comfortable using it. Some clinicians did not notice a sig-
nificant change in the estimated symptom trajectory line 
(e.g. “saturated responses”, see Fig. 3), which made it hard 
for them to interpret.

Table  6 provides results for the application in clinical 
practice section of the survey. When asked how often 
they changed the frequency of sessions during the pilot, 

Table 4 Distribution of identified strengths of evidence plots 
(N = 497)

a “Not enough data to classify” implies these individuals met the criteria for 
modeling, but did not meet the criteria for classifying

Classification N (% total) % Classified

Supported 335 (67%) 88%

Semi-supported 35 (7%) 9%

Unsupported 11 (2%) 3%

Not enough data to  classifya 116 (23%) NA
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five clinicians (n = 5, 22.5%) said “never” and 10 (n = 10, 
45%) said “rarely.” These clinicians reported that they 
often would rely more heavily on their clinical judgment 
rather than the dashboard data. With respect to other 
factors beyond the dashboard that influenced their deci-
sion making (data not shown) were the presence of con-
comitant symptoms (n = 21, 94.5%), presence of an acute 

stressor (n = 15, 67.5%), and social determinants of health 
issues (n = 14, 63%). Additionally, some clinicians noted 
the presence of environmental factors, changes to sched-
ule availability, and patient choice as reasons impacting 
the decision to alter treatment schedules. When changes 
were made to the frequency of sessions, 15 clinicians 
(N = 15, 67.5%) reported that patients were receptive to 
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Application Of "Session Dosing" For Re-Engaging Treatment
"Symptons Rebound" Example Profiles From Fig. 3

Fig. 4 A comparative application of the session ’dosing’ model to inform treatment planning for two patients with different sensitivities to lapses 
in session cadences, based on their historical data. The "q**d" nomenclature indicates schedules at a particular frequency, where ’q7d’ translates to 
every seven days. The observed and model fit plot (far left) is the same as that in Fig. 3. The dashed horizontal line across the image represents a 
hypothetical ’response’ threshold/reference and maps to sub-moderate symptom severity on the DSM L1 survey. All simulations were generated 
with 180 days of treatment followed by an additional 180 days of no treatment. For the top profile, consistent care appears to be paramount. In all 
the simulations for this profile, (despite the response magnitude) historical data suggests that this patient will return to a severe level of symptoms 
within 6 months. Historical data for the bottom profile suggests that this patient would be amenable to less frequent sessions. For these profiles, 
and all other applications of this framework, as new data is collected the relationships may shift, highlighting that these models should not be 
applied without review and regular collection of new data
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Mock Conceptual Wire Frame: Decision Support Dashboard Refining Session Cadence Based on Data 

Fig. 5 Conceptual mock wireframes for a dashboard intended to facilitate simulation of personalized treatment schedules by clinicians for 
individual patients

Fig. 6 Conceptual mock product wireframes addressing clinician feedback from our pilot study, demonstrating how to improve usability and 
integration into a clinical workflow for treatment planning
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the change, while one clinician (N = 1, 4.5%) said that one 
patient was not receptive to change, in which case no 
changes were made.

Importantly, the dashboard facilitated conversations 
with patients for 16 providers (n = 16, 72.7%). Specifically, 
six providers (n = 6, 27%) used the dashboard to discuss 
with patients the option of adding additional services or 
implementing additional resources. Five providers (n = 5, 
22.5%) shared that the dashboard helped facilitate con-
versations around treatment effectiveness and a discus-
sion on whether utilizing a different treatment approach 
may be warranted. Other providers stated that it helped 
provide recommendations to patients on how often 
to schedule sessions (n = 4, 18%). Finally, for two clini-
cians (n = 2, 9%) the dashboard facilitated conversations 
around session adherence for patients who were not con-
sistent in attending treatment.

Six clinicians (n = 6, 27%) found that the dashboard 
was not helpful. Some of the reasons reported for this 
included an inability to notice a significant change in the 
estimated symptom levels and challenges with interpret-
ing the dashboard. In addition, there were some logistical 
issues that led clinicians to find the dashboard unhelpful 
including: (i) errors with accessing the dashboard (n = 2, 
9%); (ii) an inability to implement changes in session 

frequencies due to lack of availability with their schedule 
(n = 2, 9%); (iii) challenges with reviewing the dashboard 
prior to each session with a patient (n = 2, 9%); (iv) and 
the dashboard not being user-friendly (n = 2, 9%).

Discussion
Individual responses to mental healthcare interventions 
are known to be variable [45–47] and subsequently fuel 
variable outcomes at the population level; evidence sug-
gests that treatment can be improved when it includes 
a multimodal approach including measurement-based 
care (MBC) and psychotherapy [48–51]. However, gain-
ing access to trained mental healthcare professionals is a 
major barrier to realizing this potential, with average wait 
times of 6 weeks to three months being reported [52, 53], 
and over half of the counties in the US being without a 
single licensed psychiatrist [54]. While increasing the 
number of trained and licensed mental healthcare pro-
fessionals is a major need, it is also recognized that add-
ing objective measures of success and optimizing current 
resources and treatment planning for existing profession-
als are among the next big challenges and opportunities 
for mental healthcare [7, 55].

The objective of this work was to leverage observa-
tional clinical data from a learning healthcare system 
employing measurement-based care (MBC) to develop 
an objective computational framework capable of iden-
tifying temporal links between treatment schedules and 
fluctuations in depressive symptom severity measures 
(symptom dynamics), which could subsequently be used 
to optimize treatment planning in certain cases. We 
also sought to deploy the initial framework in the same 
healthcare system at a very small scale, as an exploratory 
clinical quality improvement (QI) pilot, to gain experi-
ence deploying rough prototypes into a real-world clinic 

Table 5 Clinician use of the dashboard

Frequency Percentage

Number of times dashboard was reviewed per patient

 Never 0 0%

 Only once 2 9%

 A few times 14 63%

 Before or after each session 6 27%

Level of difficulty to interpret the dashboard

 Very difficult 1 4.5%

 Difficult 6 27%

 Neutral 7 31.5%

 Easy 7 31.5%

 Very easy 1 4.5%

Table 6 Application of the dashboard in clinical practice

Frequency Percentage

How often clinicians made changes in frequency of sessions

 Never 5 22.5%

 Rarely 10 45%

 Sometimes 6 27%

 Often 1 4.5%

 Always 0 0%
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and generate learnings in support of evidence generation 
study design and product development.

Conceptualizing mental healthcare treatment ses-
sions as a type of therapeutic input (‘dose’) presumed to 
have a measurable impact on symptom levels is a novel 
approach to modeling in healthcare. We adapted princi-
ples from systems dynamics modeling focused on linking 
the time-course of physiological responses to medication 
to the time-course of that medication in the body. While 
not a perfect analogue, the proposed framework utilizes 
a hierarchical general systems dynamics model and was 
able to resolve temporal symptom dynamics from his-
torical treatment sessions of various types. To our knowl-
edge, this is the first application of systems dynamics 
models to identify the time-course and impact of indi-
vidual mental healthcare services on a specific symptom 
at an individual (and population) level.

The observation that depressive symptom severity 
dynamics were often capable of being resolved through 
session schedules alone is noteworthy; however, a wide 
range of model performance—and applicability of model 
assumptions at the individual level—was observed. While 
there were some individuals whose symptom dynamics 
were well-resolved by the model, other profiles were not 
captured well: This was not surprising by itself as there 
are undoubtedly external factors, life events, etc. driv-
ing why an individual’s depressive symptom severity may 
fluctuate.

We posit that in the cases where symptom dynamics 
do not track with session schedules (poor model fits), 
knowing this as early as possible presents opportunities 
to assess clinical plans, and when symptom dynamics are 
well characterized by treatment schedules, this should 
be interpreted as a potentially transient relationship and 
used to design alerts and planning for the near- to mid-
term and should always be re-evaluated across model 
iterations. However, both of these scenarios offer earlier 
and more proactive, data-driven, opportunities to engage 
patients regarding their care, goals, and progress.

It is not proposed that the current framework serve as 
a mechanistic description of symptom trajectories; rather 
it serves as an objective tool, leveraging both current and 
historical data, to inform clinical decision making. In fact, 
one of the primary benefits of this approach is the ability 
to incorporate new data as it is generated to re-evaluate 
and refine treatment planning. Inevitably, as more data 
is collected, the relationship between symptom dynam-
ics and treatment schedules will shift. As discussed in 
the Methods section, this nuance is a primary driver for 
why traditional model evaluation is largely not appropri-
ate for this application and why fit-for-purpose model 
assessment at the individual level leveraging the IWRES 
measure was adopted. That being said, in the context of a 

learning healthcare system, this nuance does not provide 
a challenge to impact, instead it provides the ability to 
adjust individual planning in near real-time, rather than 
after completion of full treatment courses. Although such 
healthcare systems are not commonplace as of yet [56], 
early clinical research such as the modeling framework 
presented here, benefits greatly from the ability to deploy 
early QI initiatives in these ecosystems, enabling rapid 
prototyping and product development that is truly born 
in the clinic. Further, as there is a current lack of consen-
sus on the best way to deploy technologies such as this in 
real-world clinics, with ranging concepts like the ‘digital 
clinic’ [57–59] and the ‘trier treatment navigator’ [60, 61] 
being presented in the research literature, reports from 
real-world QI initiatives such as this are valuable.

It is important to acknowledge that introducing a new 
tool, which is both innovative and first of its kind, can 
elicit skepticism and concern to providers, who all strive 
to provide the highest quality care. For the presented test 
pilot, we emphasized that the current modeling frame-
work is not meant to replace a provider’s clinical judg-
ment, but rather serve as an objective data point that 
can be used to inform treatment—it is up to the provider 
to consider all factors that the dashboard is not taking 
into account, including acute stressors, social determi-
nants of health issues, the therapeutic relationship, the 
stage and goals of treatment, the therapeutic approach, 
and more. An important topic that arose during the QI 
pilot was a concern that looking back to see patients who 
showed slower (or lack of ) progress could be interpreted 
as a reflection of a provider’s quality. It cannot be stated 
strongly enough that the presented framework is not a 
clinical assessment tool. And while there will inevitably 
be new ideas and insights when looking retrospectively at 
data through a new lens, there must be concurrent com-
mitments to psychological safety amongst clinical teams 
and a true embrace of learning and progress at all levels 
for these initiatives to be successful. As a novel learning 
healthcare system, we are able to deploy this (and other) 
innovations with sanctity and commonality of intent. 
By the end of the pilot, providers who used the dash-
board more often were comfortable interpreting ‘satu-
rated responses’ as an opportunity for discussion with 
their patients to understand any obstacles in treatment 
and evaluate whether to utilize a different therapeutic 
approach, which we felt was one of the most positive 
findings of the pilot.

The QI pilot demonstrated a range of experiences and 
comfort levels using a novel decision support tool for 
treatment planning. It was known going into the pilot 
that there would be much feedback from clinicians on 
improving the user experience and streamlining the tech-
nology into the existing clinical record platform, which 
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was received and utilized by the design team to plan 
development criteria and develop formal mockups (see 
Fig. 6).

Some of the clinicians expressed difficulty interpreting 
the dashboard, while those who found it easiest to inter-
pret were the ones who were able to interact more with 
it and were able to take advantage of one-on-one meet-
ings with the research team. We interpret this as a posi-
tive signal that even at this early stage, more exposure 
appears to be leading to more comfort. And while the 
user facing portion of the modeling framework indeed 
lacks distillation of the content into clinically digestible 
or actionable pieces, one of the goals of the pilot was to 
identify how the technology may be used in a naturalistic 
setting in order to facilitate and direct these development 
efforts.

In addition to the intended use of informing treatment 
schedules, the modeling framework became useful for 
providers in identifying whether there was evidence to 
support benefit for additional services (coaching, therapy, 
or psychiatry) to their patient’s care. Clinicians reported 
that in previous settings such a decision was primarily 
based on clinical intuition; however, with the support of 
the data generated by the presented framework, provid-
ers were given more data to support decision making, 
leading to meaningful conversations with their patients. 
Not only did the dashboard lead to better conversa-
tions with patients regarding referrals, it also facilitated 
conversations about treatment effectiveness, barriers to 
session adherence, as well as adjustments to goals and 
clinical interventions.

While the presented framework provides an advance-
ment for utilizing patient-reported outcomes from MBC 
to optimize treatment schedules and planning, there 
are limitations to note. First, as discussed previously, 
the model is not truly mechanistic in the sense that the 
values driving impact on the symptom dynamics are 
not physical measurements, but a “latent therapeutic 
mass”: It is not only possible that individual and popula-
tion parameter estimates will shift over time, it is likely. 
One anecdotal example of this would be for patients 
who enter with severe depressive symptoms and gain 
coping skills over time and sustain low symptom levels 
with fewer and fewer sessions (i.e. “responders”): In this 
scenario, over time the individual fit of the data would 
shift to reflect longer durations of impact for single ses-
sions. The fact that the individual parameter estimates, 
and the data generating process itself, are expected to 
vary across successive model runs as new data emerges 
does not invalidate model fits or reduce the utility of the 
framework, rather it is simply a reality that is addressable 
through regular updating and monitoring of individual 
fits. To further address this limitation, we are creating 

methods of automating objective identification of poor 
model fits at the individual level, which can be used to 
generate separate triaging strategies: We believe that a 
critical area of future development will be in optimizing 
these model assessments for specific outcomes over time. 
Another potential limitation of the framework is the 
inability to assess the accuracy of predicted ‘rebounds’ in 
terms of timing, e.g. if the model predicts the return of 
severe symptoms following a lapse of 3 months of treat-
ment, how accurate is that? It is unlikely that this area of 
exploration could ever be validated in real-world clinics 
as this would create a direct conflict with provisioning 
high-quality mental healthcare.

Further, it is acknowledged that the current model 
makes several simplifying assumptions about the com-
plexity of mental health symptom dynamics and the 
possible impact of services on those symptoms. This is 
driven by a few primary considerations: First, healthcare 
delivery in real-world clinics cannot be tailored to sup-
port modeling initiatives. Any real-world observational 
data will present challenges to how much structural 
model complexity can be supported: For instance, con-
trast this with a specific example from systems dynamics 
modeling in the pharmaceutical space where specific data 
collection strategies need to be designed to capture the 
expected level of complexity in a process such as absorp-
tion of medication from the gastrointestinal tract (e.g., 
see [62]). This type of experimentation is largely not pos-
sible in a real-world healthcare setting, so we must only 
add model complexity as data naturally allows, which will 
continue to be an active area of investigation for us. Sec-
ond, given that this is the first application of a modeling 
framework to this type of problem, there is no other work 
or evidence that we are aware of to support additional 
complexities at the current state; however, as implied 
above, we believe through application of this framework 
over time, new opportunities for enhancing the repre-
sentativeness of these modeling frameworks will present 
themselves. That being said, we believe developing inno-
vative models and applications with real-world observa-
tional data (with appropriate interpretive guidelines and 
use cases) is a positive innovation that brings objectivity 
and data into the decision-making process. Such inno-
vations with real-world data are also supported through 
the increasing acknowledgement in the literature that 
evidence generated in “gold-standard” randomized 
controlled clinical trials is often not representative of 
real world populations [63, 64], as well as concurrent 
increases in the number of other organizations and regu-
latory authorities embracing innovations with real-world 
data [65–67].

Finally, the isolation of depression symptom sever-
ity as the focus of this framework does not consider 
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co-occurring symptom trajectories that may ultimately 
impact mental health outcomes. Expansion into other 
symptoms beyond depression—or the creation of a uni-
fied multivariate symptom model—as well as formal 
feasibility and evidence studies to assess which clinical 
factors and decision-making domains are impacted by 
this technology, are needed and are actively being pur-
sued. However, it is important to consider that this tech-
nology is developed to be a window by which clinicians 
can gain additional perspective to the treatment history 
for their patients and adapt decision making accordingly. 
So, while this model may be naïve to other symptoms or 
lifestyle considerations impacting healthcare outcomes, 
as with any decision support tool its output should not be 
consumed in isolation—rather, it is intended to be con-
sumed by clinicians and scientists working together to 
advance the application of technology in mental health-
care. And although the specific model estimations on the 
current data set are not expected to generalize directly 
across healthcare systems leveraging different symptom 
severity reports (e.g., PHQ-9 or HAMD for depression), 
modeling symptom severity on a relative min–max scale 
(as was done in this work) opens the door to the possi-
bility of utilizing these results (or others) as informative 
priors for subsequent modeling efforts, making the appli-
cation of this framework across distinct healthcare sys-
tems another exciting possible area of future application.

Conclusions
This work presented results from a retrospective analy-
sis of real-world observational clinical data that resulted 
in a computational framework for personalizing mental 
healthcare service utilization. In many cases, longitudinal 
patterns of patient-reported depression symptom sever-
ity could be temporally linked to historical treatment data 
in the form of mental healthcare service utilization. The 
strength of evidence supporting sensitivities to treatment 
schedule changes on depressive symptoms varied at the 
individual level, which prompted development of objec-
tive evaluation criteria for triaging model fits for utility.

The framework was subsequently deployed in a learn-
ing healthcare system at a small scale to gauge early 
signals of strengths and limitations for utility in clinical 
decision making. The ability to report feedback from uti-
lization of developing digital technologies in real-world 
mental health clinics is valuable to the literature given 
the evolving landscape and experiences of deploying 
sophisticated decision support tools. In the pilot, impres-
sions for utility and general comfort for the technology 
were mixed, which was expected given the literature and 
findings to date. However, in addition to helping guide 
decision making, the presentation of historical data and 
ability to investigate sensitivities to treatment schedules 

enabled multiple opportunities for clinicians to positively 
interact with their patients. Better user-interface and 
automated triaging were requested to lower the barrier of 
entry to the technology in future studies.

Despite perceived limitations with observational data 
in many research communities, real-world impact is 
often gauged in observational data and this work dem-
onstrates a conceptual advancement in leveraging meas-
urement-based care (MBC) to personalize treatment 
planning at the individual level in near real-time, as well 
as early pragmatic clinical signals for scaling up and 
enhancing such solutions.

While formal efficacy studies are being planned cur-
rently, work such as this may provide inspiration and 
learnings for development of new algorithms and objec-
tive computational frameworks for optimizing clinical 
care planning and resource support as more institutions 
adopt MBC frameworks.
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